Copied to
clipboard

G = S32⋊Dic3order 432 = 24·33

The semidirect product of S32 and Dic3 acting via Dic3/C6=C2

non-abelian, soluble, monomial

Aliases: S32⋊Dic3, C6.13S3≀C2, (C32×C6).7D4, C334(C22⋊C4), C2.2(C33⋊D4), C322(C6.D4), (C2×S32).S3, (C3×S32)⋊2C4, C33(S32⋊C4), (S32×C6).2C2, C339(C2×C4)⋊7C2, (C3×C3⋊S3).10D4, (C2×C3⋊S3).11D6, (C2×C33⋊C4)⋊3C2, C3⋊S3.3(C3⋊D4), (C6×C3⋊S3).7C22, C3⋊S3.2(C2×Dic3), (C3×C6).13(C3⋊D4), (C3×C3⋊S3).9(C2×C4), SmallGroup(432,580)

Series: Derived Chief Lower central Upper central

C1C32C3×C3⋊S3 — S32⋊Dic3
C1C3C33C3×C3⋊S3C6×C3⋊S3C339(C2×C4) — S32⋊Dic3
C33C3×C3⋊S3 — S32⋊Dic3
C1C2

Generators and relations for S32⋊Dic3
 G = < a,b,c,d,e,f | a3=b2=c3=d2=e6=1, f2=e3, bab=a-1, ac=ca, ad=da, ae=ea, faf-1=c, bc=cb, bd=db, be=eb, fbf-1=d, dcd=c-1, ce=ec, fcf-1=a, de=ed, fdf-1=b, fef-1=e-1 >

Subgroups: 804 in 132 conjugacy classes, 23 normal (19 characteristic)
C1, C2, C2, C3, C3, C4, C22, S3, C6, C6, C2×C4, C23, C32, C32, Dic3, C12, D6, C2×C6, C22⋊C4, C3×S3, C3⋊S3, C3×C6, C3×C6, C4×S3, C2×Dic3, C22×S3, C22×C6, C33, C3×Dic3, C3⋊Dic3, C32⋊C4, S32, S32, S3×C6, C2×C3⋊S3, C62, C6.D4, S3×C32, C3×C3⋊S3, C32×C6, S3×Dic3, C6.D6, C2×C32⋊C4, C2×S32, S3×C2×C6, C3×C3⋊Dic3, C33⋊C4, C3×S32, C3×S32, S3×C3×C6, C6×C3⋊S3, S32⋊C4, C339(C2×C4), C2×C33⋊C4, S32×C6, S32⋊Dic3
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, Dic3, D6, C22⋊C4, C2×Dic3, C3⋊D4, C6.D4, S3≀C2, S32⋊C4, C33⋊D4, S32⋊Dic3

Permutation representations of S32⋊Dic3
On 24 points - transitive group 24T1293
Generators in S24
(13 15 17)(14 16 18)(19 23 21)(20 24 22)
(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)
(1 5 3)(2 6 4)(7 9 11)(8 10 12)
(1 11)(2 12)(3 7)(4 8)(5 9)(6 10)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)
(1 16 4 13)(2 15 5 18)(3 14 6 17)(7 20 10 23)(8 19 11 22)(9 24 12 21)

G:=sub<Sym(24)| (13,15,17)(14,16,18)(19,23,21)(20,24,22), (13,19)(14,20)(15,21)(16,22)(17,23)(18,24), (1,5,3)(2,6,4)(7,9,11)(8,10,12), (1,11)(2,12)(3,7)(4,8)(5,9)(6,10), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,16,4,13)(2,15,5,18)(3,14,6,17)(7,20,10,23)(8,19,11,22)(9,24,12,21)>;

G:=Group( (13,15,17)(14,16,18)(19,23,21)(20,24,22), (13,19)(14,20)(15,21)(16,22)(17,23)(18,24), (1,5,3)(2,6,4)(7,9,11)(8,10,12), (1,11)(2,12)(3,7)(4,8)(5,9)(6,10), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,16,4,13)(2,15,5,18)(3,14,6,17)(7,20,10,23)(8,19,11,22)(9,24,12,21) );

G=PermutationGroup([[(13,15,17),(14,16,18),(19,23,21),(20,24,22)], [(13,19),(14,20),(15,21),(16,22),(17,23),(18,24)], [(1,5,3),(2,6,4),(7,9,11),(8,10,12)], [(1,11),(2,12),(3,7),(4,8),(5,9),(6,10)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24)], [(1,16,4,13),(2,15,5,18),(3,14,6,17),(7,20,10,23),(8,19,11,22),(9,24,12,21)]])

G:=TransitiveGroup(24,1293);

36 conjugacy classes

class 1 2A2B2C2D2E3A3B3C3D3E3F4A4B4C4D6A6B6C6D6E6F6G6H6I6J6K···6P6Q6R12A12B
order122222333333444466666666666···6661212
size11669924444818185454244446666812···1218183636

36 irreducible representations

dim1111122222224444488
type+++++++-++++-
imageC1C2C2C2C4S3D4D4Dic3D6C3⋊D4C3⋊D4S3≀C2S32⋊C4S32⋊C4C33⋊D4S32⋊Dic3C33⋊D4S32⋊Dic3
kernelS32⋊Dic3C339(C2×C4)C2×C33⋊C4S32×C6C3×S32C2×S32C3×C3⋊S3C32×C6S32C2×C3⋊S3C3⋊S3C3×C6C6C3C3C2C1C2C1
# reps1111411121224224411

Matrix representation of S32⋊Dic3 in GL4(𝔽7) generated by

1040
5614
4406
0001
,
0145
6532
4416
0006
,
5353
3523
0010
0004
,
4215
4254
0060
1630
,
4145
1435
0050
0003
,
5656
4410
6144
3321
G:=sub<GL(4,GF(7))| [1,5,4,0,0,6,4,0,4,1,0,0,0,4,6,1],[0,6,4,0,1,5,4,0,4,3,1,0,5,2,6,6],[5,3,0,0,3,5,0,0,5,2,1,0,3,3,0,4],[4,4,0,1,2,2,0,6,1,5,6,3,5,4,0,0],[4,1,0,0,1,4,0,0,4,3,5,0,5,5,0,3],[5,4,6,3,6,4,1,3,5,1,4,2,6,0,4,1] >;

S32⋊Dic3 in GAP, Magma, Sage, TeX

S_3^2\rtimes {\rm Dic}_3
% in TeX

G:=Group("S3^2:Dic3");
// GroupNames label

G:=SmallGroup(432,580);
// by ID

G=gap.SmallGroup(432,580);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,3,-3,56,85,1684,571,298,677,1027,14118]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^3=b^2=c^3=d^2=e^6=1,f^2=e^3,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,f*a*f^-1=c,b*c=c*b,b*d=d*b,b*e=e*b,f*b*f^-1=d,d*c*d=c^-1,c*e=e*c,f*c*f^-1=a,d*e=e*d,f*d*f^-1=b,f*e*f^-1=e^-1>;
// generators/relations

׿
×
𝔽